
AP[®] CHEMISTRY 2016 SCORING GUIDELINES

Question 5

 $2 \operatorname{C}_4\operatorname{H}_6(g) \rightarrow \operatorname{C}_8\operatorname{H}_{12}(g)$

At high temperatures the compound C_4H_6 (1,3-butadiene) reacts according to the equation above. The rate of the reaction was studied at 625 K in a rigid reaction vessel. Two different trials, each with a different starting concentration, were carried out. The data were plotted in three different ways, as shown below.

© 2016 The College Board. Visit the College Board on the Web: www.collegeboard.org.

AP[®] CHEMISTRY 2016 SCORING GUIDELINES

Question 5 (continued)

(a) For trial 1, calculate the initial pressure, in atm, in the vessel at 625 K. Assume that initially all the gas present in the vessel is C_4H_6 .

For trial 1, $\frac{n}{V} = 0.020 \text{ mol/L}$ (or assume the volume of the vessel is 1.0 L; the number of moles of C ₄ H ₆ in the vessel would then be 0.020 mol).	1 point is earned for a correct setup.
$PV = nRT$ $P = \frac{nRT}{V} = \frac{(0.020 \text{ mol})(0.08206 \text{ L atm mol}^{-1} \text{ K}^{-1})(625 \text{ K})}{1.0 \text{ L}} = 1.0 \text{ atm}$	1 point is earned for the correct answer.

(b) Use the data plotted in the graphs to determine the order of the reaction with respect to C_4H_6 .

Second order (because the plot of $1/[C_4H_6]$ is a straight line).	1 point is earned for the correct order.
---	--

(c) The initial rate of the reaction in trial 1 is 0.0010 mol/(L·s). Calculate the rate constant, k, for the reaction at 625 K.

From the second-order rate law (differential form): rate = $k[C_4H_6]^2$	
$\Rightarrow k = \frac{\text{rate}}{([C_4H_6])^2} = \frac{0.0010 \text{ mol}/(\text{L} \cdot \text{s})}{(0.020 \text{ mol}/\text{L})^2} = 2.5 \text{ L/(mol} \cdot \text{s})$	
OR	
From the second-order rate law (integrated form):	
$\frac{1}{[C_4H_6]_t} = 2kt + \frac{1}{[C_4H_6]_0}$	1 point is earned for the correct value.
The coefficient of t is equal to $2k$ because of the reaction stoichiometry.	
The slope of the line in the plot of $\frac{1}{[C_4H_6]}$ versus time is 2k.	
Thus slope = 5.0 L/(mol·s) = $2k$, therefore $k = 2.5$ L/(mol·s).	
<u>Note:</u> Students who choose the second method of determining k but omit the factor of 2, thereby getting an answer of 5.0 L/(mol·s), still earn the point.	